
AD-A276 341

In-House Report
December 1993

DEVELOPING THE MULTIMEDIA USER
INTERFACE COMPONENT (MUSIC) FOR
THE ICARUS PRESENTATION SYSTEM
(IPS)

Ingrid Bartnik

IL ECTEMR 04 1994U
APPROVED FOR PUBLIC RELEASE, DIS TRISUrTIN UNLIMITED.

94-07067

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

0Aj

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TM-93-6 has been reviewed and is approved for publication.

APPROVED: K
JOSE CZAMERA, Chief
Signal Intelligence Division
Intelligence & Reconnaissance Directorate

FOR THE COMMANDER:

GARRY BRINGER
Technical Director
Intelligence & Reconnaissance Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (IRAE) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

"REPORT DOCUMENTATION PAGE 0MV 0704-0188~ b ~1w p u~u h~q~W~f.ri OMBl No.* 0704-0188

-ol kfwan n a mg qn ftrw ruiU wn~dUb 0 Wa*W~H n mmg m0 w Im ndn i Opwouomu wun 1215.-oMi
OmftW~ S.2Lft1h A~qWVAZ=4 m uUUUeftmd Mew~uw ~~P~ Pe W41~ * OC0M~

1. AGNCY USE ONLY AWO OW " REPORT DATE 2 REPORI TYPE AND DATEs COVERED
7 December 1993 Ina-House Jun - Aug 93

4 TWLE AM SL1sM1E & FUNDING NUMBERS
DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT (MUSIC) PE - 62702F
FOR THE ICARUS PRESENTATION SYSTEM (IPS) PR - 4594
SAUnHwR• TA - 15

Ingrid Bartnik WU - J9

7. PERFORJM1NG ORFAIZAMON NAME(S) AND ADORESSES) PERFORMNG ORGANZATION
Rome Laboratory (IRAE) REPORT NUMBER
32 Hangar Road RL-TM-93-6
Griffiss AFB NY 13441-4514

9LONSS" OFN G AGENCY NAMES) AND ADOFEU(ES) 10. ,P-S.2Ar NWrORING
Rome Laboratory (IRAE) AGENCY REPORT NUMBER

32 Hingar Road
Griffiss AFB NY 13441-4514

11. SUPPL.EMENTARY NOTES
Rome Laboratory Project Engineer: Alex F. Sisti/IRAE (315) 330-4518

12L D=TR1BUWOXWAVAMABSIJY STATEMENT Ilb. DIWRlBUTION CODE
Approved for public release; distribution unlimited.

1 M A8S1RACTqdk~amm w
Rome Lab's Intelligence Technology branch provides modeling and simulation support to
a variety of intelligence consumers and analysts, across a wide spectrum of application
areas. Much of the research, development and capabilities demonstrations take place in
the ICARUS Prototype Development and Demonstration Facility, named after the character
from Greek Mythology who built the first prototype to solve a problem. In order to
provide a cohesive development and demonstration architecture, as well as to advance
the state-of-the-art in user interfaces and presentation techniques, the ICARUS Pre-
sentation System was envisioned, being comprised of two components: the Interactive
VuGraph (InterVu) System and the Multimedia User Interface Component (MUSIC). This
report documents the initial research, design and implementation of a prototype of the
MUSIC system.

DTIC QJL: .K ..

14. SUJ•ECT TERMWS 1, M•M•U oP P
User interface Rapid Prototyping X Toolkit 24
Multimedia X windows &PgRMCEO

17. SECUFITY CI.AS 'T1ION I& SECUFITY CLASWICA•1ON 119 SECURO CLAS8ICA•lON 2ML UMTATON OF ABSTRACT
OF REPORT OF THS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NM i Famg 29

Z3Sqi
2WItR

1.0 INTRODUCTION .. 1

1.1 The ICARUS Prototype Development and Demonstration Facility 1

1.2 The ICARUS Presentation System (IPS) ... 2
1.3 Interactive VuGraph (InterVu) System .. 2

1.4 Multimedia User Interface Component (MUSIC) 2

2.0 DESIGN CONSIDERATIONS ... 3

2.1 Graphical User Interface .. 3

2.2 Platforms .. 4

2.3 Window Systems .. 4

3.0 IMPLEMENTATION OF THE PROTOTYPE MUSIC SYSTEM 8

3.1 X Toolkit .. 8

3.2 Files Involved .. 8

3.2.1 Resource File .. 8

3.2.2 Application File .. 12

4.0 RECOMMENDATIONS .. 14

5.0 SUMMARY .. 14

DTIC TAB]

-tas 'eu to .r I

a',i ,~t•S; Lii lt

Abstract Rome Lab's Intelligence Technology branch provides
modeling and simulation support to a variety of intelligence
consumers and analysts, across a wide spectrum of
application areas. Much of the research, development and
capabilities demonstrations take place in the ICARUS
Prototype Development and Demonstration Facility, named
after the character from Greek mythology who built the first
prototype to solve a problem. In order to provide a cohesive
development and demonstration architecture, as well as to
advance the state-of-the-art in user interfaces and
presentation techniques, the ICARUS Presentation System was
envisioned, being comprised of two components: the
Interactive VuGraph (InterVu) System and the Multimedia
User Interface Component (MUSIC). This report documents
the initial research, design and implementation of a prototype
of the MUSIC system.

1.0 INTRODUCTION

Rome Lab's Intelligence Technology branch has long provided
modeling and simulation support to a variety of intelligence consumers
and analysts, across a wide spectrum of application areas. While most of
this support is in the form of specific, product-oriented models/simulations
for specific users' stated problems (and usually contracted out), a good deal
of the basic research is done in-house. To that end, the ICARUS Prototype
Development and Demonstration Facility was built, for the purpose of
advancing the state-of-the-art in modeling and simulation science.

1.1 The ICARUS Prototype Development and Demonstration Facility

The ICARUS Prototype Development and Demonstration Facility is an
in-house computing environment in which R&D work is performed in
modeling and simulation technology (e.g., object-oriented simulation,
software/model reuse, model integration, metamodeling, etc.), while also
serving ab a facility for demonstrating to visitors these new techniques and
some of the products built for operational customers. In order to provide a

1

cohesive development and demonstration architecture, as well as to
advance the state-of-the-art in user interfaces and presentation
techniques, the ICARUS Presentation System was envisioned, being
comprised of two components: the Interactive VuGraph (InterVu) System
and the Multimedia User Interface Component (MUSIC).

1.2 The ICARUS Presentation System QIPS)

The ICARUS Presentation System (IPS) is a presentation layer which
will be built on X Windows, and will serve two purposes. First, it will serve
as a graphical user interface to all software systems hosted in the facility,
and second, it will be used as an interactive briefing tool. These
components are briefly described below.

1.3 Interactive VuGraph (InterVu) System

The Interactive VuGraph (InterVu) System is a new presentation
technique which will support both the canned ICARUS briefing and special-
purpose presentations that are interactively "guided" by members of the
audience. InterVu, which will be a user-selectable option, will consist of a
series of presentation screens (much like the present ICARUS storyboards),
whose major points -- bullets and/or windows -- will be context-sensitive,
allowing a briefing to be tailored to the specific interests of any audience.
The InterVu System will also allow for demonstrations of any software
system of interest to be launched on any of the ICARUS hardware; again, as
interactively requested by the audience.

1.4 Multimedia User Interface Component (MUSIC)

The Multimedia User Interface Component (MUSIC) is designed to be
the method of entrance to all software components hosted in the ICARUS
facility. It will be a graphical, iconic interface that gives an ICARUS user
virtual access to any software system, using a common "look and feel";
regardless of where the system is physically hosted on the ICARUS
network. Initially, it will be based on a "point-and-click" methodology, but
long-range plans are to incorporate other Rome Lab prototypes in voice

2

recognition and Virtual Reality (VR) devices for input methods. It is this
MUSIC component which is the subject of this report. Specifically, the
following sections discuss the research, design and implementation of the
initial prototype of the Multimedia User Interface Component (MUSIC) for
the ICARUS Presentation System (IPS).

2.0 DESIGN CONSIDERATIONS

A significant step in developing the Multimedia User Interface
Component (MUSIC) for the ICARUS Presentation System (IPS) was
analyzing many design considerations, including the graphical user
interface (GUI), platforms, and window systems. These are vital for
designing the MUSIC and InterVu systems as shells that will have
considerable dual use and commercial potential.

2.1 Graphical User Interface

A graphical user interface represents a distinctively different human
computer interface (HCI) than the "traditional textual line interface" [3].
GUIs ordinarily provide the user with a graphical interactive method of
directly manipulating display objects through various inputs. There are
several advantages associated with GUIs.

By directly manipulating and interacting with display objects, the
user has virtual and transparent access to the various applications the GUI
supports. These objects include windows, icons, and popup/pulldown
menus. Through these, the users do not have to be concerned with the
internal operations of the various platforms or software systems. Instead,
they merely need to know how to operate the GUI.

Through GUIs, modeless interfaces can be implemented. Modeless
interfaces provide users with opportunities to access various states of the
program, not just the current state that they are in. In modal interfaces, a
user can only maneuver within the current state of the program. In order

3

to access any other dimensions of the program, the user has to find the
desired mode by going through a hierarchy of windows. This can become
particularly disturbing when two sections of an application depend upon
each other. Through display objects, users can simultaneously access the
multiple modes within a program by dynamically transferring control
through callbacks. One potential problem is creating an excessive amount
of modes that ultimately confuse users and developers alike.

GUIs in turn tend to have a common look-and-feel. This is conveyed
through various widget sets which are not the same, but contain significant
similarities. (A widget is a user interface component). Each widget set
allows at least the manipulation of, as mentioned, icons, windows, and
menus such as pulldown and popup. Thus, the widgets of each set are
similar in appearance as well as in function. The user can be provided with
numerous interfaces that transparently access applications while not
mandating that the user be familiar with interfaces in general, or with
each individual application's interface.

2.2 Platforms

With the advent of multiple platforms, compatibility has become a
major issue. In particular, user interfaces have to be portable to all
hardware and not just customized for one specific system.

2.3 Window Systems
Another aspect that had to be acknowledged was window systems.

Window systems "provide the underlying window graphics libraries and
device drivers for the construction of window or graphical user interfaces"
[3]. Currently there is a variety of window systems available. Some of
those include X Window System, the Macintosh Toolbox, Microsoft
Windows, and NeXTStep. In developing the IPS it was important to look at
the X Window System in particular.

The X Window System was developed by the Massachusetts Institute
of Technology's (MIT) Athena Project and Digital Equipment Corporation

4

(DEC) in the mid 1980's. Early versions suffered from compatibility
problems with their upgrades, but with the issuance of Version 11, a stable
baseline finally emerged.

5

The X Window System can be considered a standard window system,
primarily due to its implementation of a common graphics language. This
aids in providing portability for an interface. As a result, all computers
have the capability of hosting an interface. In other words, interfaces are
not limited to use by any one manufacturer's machines. This directly
translates to X Window System's ability to operate well on a network, in a
heterogeneous workstation environment.

As mentioned, the X Window System is a "network-transparent
client-server based" [1] window system. This allows for users to have easy
access to applications all across the network without ever needing to be
concerned with how the network implements remote access or execution
on heterogeneous machinery.

X Window System also offers an interface designer versatility, for it
does not endorse any one particular interface style. This allows a designer
the opportunity to create and apply any desired style.

Window systems have one distinctive problem; that being a reliance
on low level routines which can be rather tedious to program. Toolkits, on
the other hand, provide higher level programming through combinations of
low level routines. Thus, toolkits provide routines which are less
cumbersome to work with. Some of the various toolkits available include
OPEN LOOK Intrinsics Toolkit (OLIT), OSF/Motif Widget Set, and the X
Toolkit.

OLIT was developed by AT&T and Sun Microsystems. OLIT is based
on Xt Intrinsics and the X Window System, and is written in the C
programming language. Thus an application would be dependent on the X
Window System, Xt Intrinsics, and OLIT.

The OSF/Motif widget set was developed by the Open Software
Foundation. As with OLIT, the OSF/Motif widget set is also based on the
Xt Intrinsics and X Window System. The following diagram indicates this.

6

Application

Widget Set

Xt Intrinsics

Xlib C Language Interface

Network Connection

X Server 7

Diagram 1: X Window architecture with OLTIT and OS/Motif

OSF/Motif also includes the User Interface Language (UIL) which is "a user
interface language which can be used as an alternative to the C
programming language" [2].

The X Toolkit includes Xt Intrinsics as well as the Athena Widgets.
This toolkit is written in the C programming language, and was the toolkit
chosen to implement a prototype of MUSIC for the IPS.

7

3.0 IMPLEMENTATION OF THE PROTOTYPE MUSIC SYSTEM

3.1 X Toolkit

Because of its maturity, community acceptance and ease-of-use, the
X Toolkit was used to implement a prototype MUSIC system. Specifically,
the Xt Intrinsics provide high level routines for developing user interfaces.
Also, there is a set of user interface components known as the Athena
Widgets, which include scroll bars, menus, dialog boxes, and buttons.

The creator of a user interface acquires increased versatility because
the toolkit is built from the X libraries. This means that programmers not
only can use the Athena Widget set, but can also create new widgets which
address the demands of the application.

Also, a programmer does not have to exclusively rely upon the low
level routines found in the X libraries of the X Window System. The Xt
Intrinsics package furnishes developers with high level routines which are
built from routines found in the X libraries, while also allowing for the data
type 'Widget'. As a result, there are higher level routines that can be
supplemented by low level routines when needed.

3.2 Files Involved

In implementing a prototype for MUSIC, two main files were created;
those being the resource file and the actual program file - the application.

3.2.1 Resource File

A resource file coiItains specific values for various resources. A
resource here can be defined as a "named, settable piece of data in some
data structure" [5]. In regards to the X Toolkit, these resources generally
apply to widget attributes. A few examples of those are the x and y
coordinate positions, and the background and foreground colors. There are
four types of resource files. They are the applications defaults file, per-

8

user application defaults file, user defaults file, and per-host defaults file.
The per-host defaults file should never be modified by the application's
default file. These files are parsed by the application in the order they
were listed and, as a result, the applications defaults file has the least
precedence, while the per-host defaults has the highest precedence. Also,
application default files should allocate values as generically as possible in
order to increase the ease with which users can customize their own
environments.

The following (Example 1) is an example of part of the IPS'
application defaults file:

Icarus* IcDemo.background: PeachPuff4
Icarus* IcDemo.borderColor. PeachPuff 1
Icarus* IcDemo.Iabel:
PROTOTYPE\n\
\n\
DEVELOPMENT
Icarus* IcDemo.fromVert: IcLabel
Icarus*IcDemo.ShapeStyle:
RoundedRectangle

Example 1: Resource file

Resources are very useful for two main reasons. First, by
establishing resources, a uniform interface can be used to set and inquire
about the resources' actual values. Thus all widget classes can be handled
the same; for example, in respect to creation and attribute modification.
This is accomplished through commands such as XtCreateManagedWidget
and XtGetValues, which pass resources to, and also receive resources from,
the application. Second applications can thus not only be customized by
users to reflect their netus and desires, but also by software installers to
meet users' and other specifications.

Resources do not have to be located only in a resource file which is
separate from the application, but can also be placed in an argument list,
found directly within the application. An argument list can be considered
"an array of Arg structures" [5]. There are several advantages to assigning
values to resources in this manner. First, resources can be set during the

9

execution of an application (unless a resource file is changed directly
before every execution where the values in the resource file are no longer
valid). Second, an argument list is useful to application developers
specifically, for it provides them with a method to set resources in such a
manner that users cannot modify them (the reason will become obvious in

a subsequent section). Thus it is possible to provide a certain level of
consistency throughout a network by prohibiting users the access of a
predetermined set of resources.

The following (Example 2) is an example of an argument list used in
prototyping MUSIC:

void init-screen(w)
Widget w;

Arg wargs[201;
int n;
int min-height, min-width, max-height,

max-width, width, height;
int display-height, display-width;
int screen-num;
Display *display;

display = XtDisplay(w);
screen-num = DefaultScreen(display);
display-width = DisplayWidth(display, screen.num);
display-height = DisplayHeight(display, screen-num);
height = display-height - 100;
width = display-width - 100;
min-height = display-height - 350;
min-width = display-width - 350;
max-height = display-height - 50;
max-width = display-width - 50;
n = 0;

XtSetArg(wargs[n], XtNwidth, width); n++;
XtSetArg(wargs[n], XtNheight, height); n++;
XtSetArg(wargs[n], XtNminWidth, min-width); n++;
XtSetArg(wargs[n], XtNminHeight, min-height); n++;
XtSetArg(wargs[n], XtNmaxWidth, max-width); n++;
XtSetArg(wargs[n], XtNmaxHeight, max-height); n++;

XtSetValues(w, wargs, n);

Example 2: Argument list

10

These resources provide the width and length dimensions for the
introductory screen of MUSIC. Since monitors vary tremendously, this
method increases portability. This argument list allows for the width and
height dimensions to dynamically change according to the specifications of
the monitor currently displaying the interface. Also, users do not have an
opportunity to interfere in this aspect of portability for they cannot
override those values set in the argument list.

Thirdly, there are situations where creating a resource file can be
more of a bother than it's worth. An example would be the temporary use
of a minor program that will most likely not be kept for any significant
length of time; e.g., a short test program.

Compared to argument lists, resource files are usually the preferred
method of declaring resource values for a variety of reasons. First, they
provide users with more opportunities to customize an application. Since
an application reads the argument list, then the resource file, and lastly the
default values for a resource class, and "only takes the first value found"
[5] for any given resource -- ignoring all later values found -- the user
cannot reset any resources through the resource file that were already set
in the argument list. As a result, argument lists limit the resources that a
user can alter. Second, software installers have the advantage of not
needing to change the actual code -- the argument lists -- for they just
have to change the values found in the resource file. Thirdly, applications
have the ability to access the resource values from the resource file more
efficiently than from the argument list.

An X based program uses the directory /usr/lib/X1 1/app-defaults as
the default path when searching for the resource file. There is no need to
include the resource file as a library. While actually developing an
application, however, the developer can store the resource file in the
directory she/he is working in, and use xrdb (an X server resource
database utility) to make sure the contents of the resource file are loaded
in the RESOURCE-MANAGER property of the root window. This was done in
our implementation, where the working directory was /jet/ing/Icarus.

11

3.2.2 Arplication File

The other file created was the application file. In general, an X
Toolkit application performs the following few steps: intrinsic
initialization, widget creation, callback and event handler registration,
widget realization, and event loop processing. Using these steps, a
modeless graphical user interface -- the Icarus Presentation System (IPS) -
- was created.

As mentioned, the IPS is to have two basic functions. Its primary
function is to act as a graphical user interface to access all software
systems hosted now and in the future in the ICARUS Facility. The
following (Table 1) lists all those currently-resident systems which MUSIC
is allowed to access.

Name Purpose of System
(full, followed by acronym)

Non-Cooperative Target Identification An integrated modeling environment for

(NCTI) performing NCTI analysis.

Low Observable Design Synthesis Tool Aero coefficients and mass properties of arbitrary

(LODST) defined geometries are generated.

Electronic Intelligence Tutor (ELINT) Allows on-line ELINT training and testing.

IVIEW Graphically displays history files generated by

various Air Force simulations.

Tac Brawler (TB) Air Force standard air engagement simulation.

Electromagnetic Antennae Modeling Integrated software system for performing

(EAM) antenna modeling.

Threat Assessment Support Prototype open systems architecture for

Environment (TASE) intelligtence processing and analysis.

Table 1: Current-resident systems hosted by the ICARUS Facility hardware

The other purpose is to act as an interactive briefing tool which will be
implemented as the InterVu system. Currently the option is selectable,
but is not yet functional.

12

The application, as of now, is portable to all of the ICARUS Facility
hardware and can be remotely executed on any of its hardware. The
hardware currently in the ICARUS Facility is shown in Table 2.

Workstations

Silicon Graphics IRIS 4D/85GT

SUN SPARCserver630MP

SUN SPARCstation2

Table 2: Hardware in the ICARUS Facility

The IPS, as implemented to date, consists of a few screens; one of
which is the introductory screen. This screen offers three selections, while
also informing the user of the interface's purpose. As the user moves the
cursor around the screen via a mouse, only the three selections are
highlighted; those being Prototype Development, Demonstration Facility,
and Quit. In order to proceed with a selection, the user has to release the
mouse button within the selection's area. If the user presses the first
mouse button down while within the button on the screen, but moves out
of the button's area, then the attempt to make a selection is voided. The
first selection, Prototype Development, is currently not fully functional. In
the future it will serve as a programmer's entrance to the model
development activity he or she is interested in working on. The second
selection, Demonstration Facility, pops up a screen where each currently
available capabilities demonstration can be selected through buttons on
the screen. The selecting is done the same way as in the introductory
screen.

Two main aspects used to facilitate only a basic implementation of
the IPS were a breadth-first approach and stubbing. A breadth-first
approach was implemented in order to attempt to demonstrate what a
full-up system would look like to the user. This approach calls for the
breadth-wise development of each level without going deeper until the
entire level is developed. For this prototype implementation, however, no
branch is fully developed, and as a result stubbing had be to used. Each
option selected that has not been implemented responds with the message:

13

"This application is not available as of now.

Please exit and make another selection.*

Thus this application is a one step interface to all the software
systems and demonstrations in the ICARUS Facility. The users are
provided with an interface that they are familiar with and that can also
easily access systems by the manipulating of screen objects. There is no
need to know the actual network's configuration.

4.0 RECOMMENDATIONS

What lies ahead for the IPS? Currently the future plans for the IPS
involve the following:

1. employing other input methods such as other Rome Lab
prototypes in voice recognition and Virtual Reality devices;

2. implementing the IPS as an iconic user interface;
3. connecting all the software systems in the ICARUS Facility; and
4. building context sensitivity for InterVu.

An example of iconifying the IPS would be the use of a vugraph (or
megaphone) symbol as an icon to access the InterVu system.

5.0 SUMMARY

This paper has concentrated on various research and development
aspects of the Icarus Presentation System; specifically, on the creation of
the GUI aspect of the IPS. It consists of various screens which offer
entrance to all the software systems in the ICARUS Facility, MUSIC, and an

14

interactive briefing tool; the InterVu system. Through current and future
development, enhancement, and research, the IPS will become a state-of-
the-art interface, allowing multi-media access to the systems, as well as
audience driven interactive presentations and demonstrations.

S1

BIBLIOGRAPHY

1. Young, Douglas A. and John J. Pew. The X Window System:
programming and applications with Xt. New Jersey: Prentice Hall, Inc.,
1992.

2. Young, Douglas A. Object-Oriented Programming with C++ and
OSF/Motif. New Jersey: Prentice Hall, Inc., 1992.

3. Yip, Stephen W. L. and David J. Robson, "Graphical User Interfaces
Validation: A problem analysis and a strategy to solution", Proceedings of
the Twenty-Fourth Annual Hawaii International Conference on System
Sciences, 1991, p. 91 - 100, vol. 2.

4. Thimbleby, Harold. User Interface Design. New York: ACM Press,
1990.

5. Asente, Paul J. and Ralph R. Swick with Joel McCormack. .X Window
System Toolkit: The Complete Programmer's Guide and Specification.
Digital Press, 1990.

6. Nye, Adrian. Volume One: Xlib Programming Manual. Sebastapol,
California: O'Reilly & Associates, Inc., 1990.

7. Risley, Margot J. and Alex F. Sisti. "Designing a User-Friendly
Interface for the Forward Area Processor (FAP) Simulation." RADC-TM-85-
14, Jan. 85.

16

i ~MISSK)N

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary
program in research, development, test, and technology
transition in support of Air Force Command, Control,
Communications and Intelligence (C31) activities for all
Air Force platforms. It also executes selected
acquisition programs in several areas of expertise.
Technical and engineering support within. areas of
competence is provided to ESC Program Offices (POs) and
other ESC elements to perform effective acquisition of
C31 systems. In addition, Rome Laboratory's technology
supports other AFMC Product Divisions, the Air Force user
community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research
programs in areas including, but not limited to,
communications, command and control, battle management,
intelligence information processing, computational
sciences and software producibility, wide area
surveillance/sensors, signal processing, solid state
sciences, photonics, electromagnetic technology,
superconductivity, and electronic
reliability/maintainability and testability.

